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1 Introduction

In 1971, J. Lipman proved:

For a one-dimensional complete Noetherian local domain A with an
algebraically closed residue field of characteristic 0, if A is saturated,
then A has minimal multiplicity.

The proof based on the fact that

if A is saturated, then A is an Arf ring.
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Definition 1.1 (Lipman)

Let A be a CM semi-local ring with dimA = 1. Then A is called an
Arf ring, if the following hold:

(1) Every integrally closed open ideal has a principal reduction.

(2) If x , y , z ∈ A s.t.

x is a NZD on A and
y

x
,
z

x
∈ A,

then yz/x ∈ A.
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Question 1.2

What happens if we remove the condition (1)?

Definition 1.3

A commutative ring A is said to be weakly Arf, provided

yz/x ∈ A, whenever x , y , z ∈ A s.t. x ∈ A is a NZD, y/x , z/x ∈ A.
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2 Basic properties
Throughout this talk

A a Noetherian ring

W (A) the set of NZDs on A

FA the set of ideals in A which contain a NZD on A.

For I ∈ FA, there is a filtration:

A ⊆ I : I ⊆ I 2 : I 2 ⊆ · · · ⊆ I n : I n ⊆ · · · ⊆ A.

Define
AI =

∪
n≥0

[I n : I n]

which is a module-finite extension over A and A ⊆ AI ⊆ A.
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If a ∈ I is a reduction of I , i.e., I r+1 = aI r for ∃ r ≥ 0, then

AI = A

[
I

a

]
=

I r

ar
where

I

a
=

{x

a

∣∣∣ x ∈ I
}
⊆ Q(A).

Hence AI = I n : I n for ∀n ≥ r .

red(a)(I ) = min{r ≥ 0 | I r+1 = aI r} = min{n ≥ 0 | AI = I n : I n}

I ∈ FA is stable in A ⇐⇒ AI = I : I

⇐⇒ I 2 = aI for ∃ a ∈ I .
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Theorem 2.1 (Lipman)

Let A be a CM semi-local ring with dimA = 1. Then TFAE.

(1) A is an Arf ring.

(2) Every integrally closed ideal I ∈ FA is stable.

When A is a CM local ring with dimA = 1,

if A is an Arf ring, then A has minimal multiplicity.

Set Λ(A) = {(x) | x ∈ W (A)}.

Theorem 2.2

A is a weakly Arf ring if and only if every I ∈ Λ(A) is stable.
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Proposition 2.3

Let φ : A → B be a homomorphism of rings. Suppose aB ∩ A = aA
and φ(a) ∈ W (B) for ∀a ∈ W (A). If B is weakly Arf, then so is A.

Corollary 2.4

(1) Let B be an integral domain, A ⊆ B a subring of B s.t. A is a
direct summand of B. If B is a weakly Arf ring, then so is A.

(2) If B = A[X1,X2, . . . ,Xn] (n > 0) is weakly Arf, then so is A.

(3) Let φ : A → B be the faithfully flat homomorphism of rings. If
B is a weakly Arf ring, then so is A.
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Proposition 2.5

Let (A,m) be a Noetherian local ring with dimA = 1. Then A is a

weakly Arf ring if and only if so is Â.

Let R = C[[t4, t5, t6, s]] ⊆ C[[t, s]]. Choose a UFD A s.t. R ∼= Â.

Then A is a weakly Arf ring. If Â is weakly Arf, then

S = C[[t4, t5, t6]] → R ∼= Â

ensures that S is weakly Arf, whence S is Arf. This is impossible.

Hence Â is not weakly Arf.
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Theorem 2.6

Suppose that

A is an integral domain,

A satisfies (S2), and

A contains an infinite field.

Then A is weakly Arf if and only if so is A[X1,X2, . . . ,Xn] for ∀n ≥ 1.

Let A = k[Y ]/(Y n) (n ≥ 1) and B = A[X ]. Then A is weakly Arf
and

B is a weakly Arf ring ⇐⇒ n ≤ 2.
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Theorem 2.7

Let R be a Noetherian ring, M a finitely generated torsion-free
R-module. Then TFAE.

(1) A = R ⋉M is a weakly Arf ring.

(2) R is a weakly Arf ring and M is an R-module.

Theorem 2.8

Let (R ,m), (S , n) be Noetherian local rings with k = R/m = S/n.
Suppose that depthR > 0 and depth S > 0. Then TFAE.

(1) A = R ×k S is a weakly Arf ring.

(2) R and S are weakly Arf rings.
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3 Blow-ups

For n ≥ 0, we set

An =

{
A if n = 0

A
J(An−1)
n−1 if n ≥ 1

where J(An−1) stands for the Jacobson radical of An−1.

Theorem 3.1 (Lipman)

Let A be a CM semi-local ring with dimA = 1. Then TFAE.

(1) A is an Arf ring.

(2) (An)M has minimal multiplicity for ∀n ≥ 0, ∀M ∈ MaxAn.
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Recall Λ(A) = {(x) | x ∈ W (A)}.
Define

Γ(A) = {I ∈ Λ(A) | I ̸= A} and

Max Λ(A) the set of all the maximal elements in Γ(A) with
respect to inclusion.

Then

A = Q(A) ⇐⇒ MaxΛ(A) = ∅
A = A ⇐⇒ If M ∈ MaxΛ(A), then µA(M) = 1.

Hence, there exists M ∈ MaxΛ(A) s.t. µA(M) ≥ 2, provided A ̸= A.
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Definition 3.2

Define

A0 = A

A1 =

{
A if A = A
AM if A ̸= A, ∃M ∈ MaxΛ(A) s.t. µA(M) ≥ 2.

An = (An−1)1 for n ≥ 2.

We then have a chain of rings

A = A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · ⊆ A.
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Theorem 3.3

Consider the following conditions.

(1) A is a weakly Arf ring.

(2) For ∀M ∈ MaxΛ(A), M : M is a weakly Arf ring and M is stable.

(3) For every chain A = A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · ⊆ A, and for
∀n ≥ 0, An is a weakly Arf ring.

(4) For every chain A = A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · ⊆ A, and for
∀n ≥ 0 and ∀N ∈ MaxΛ(An), N is stable.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4) hold. If dimA = 1, or A is locally
quasi-unmixed, (4) ⇒ (1) holds.

For a Noetherian local ring R ,

R is quasi-unmixed
def⇐⇒ dim R̂/Q = dimR for ∀Q ∈ Min R̂ .

Naoki Endo (Waseda University) On weakly Arf rings November 26, 2019 15 / 21



1 Introduction 2 Basic properties 3 Blow-ups 4 Examples

Let 0 < a1, a2, . . . , aℓ ∈ Z (ℓ > 0) s.t. gcd(a1, a2, . . . , aℓ) = 1. Set

H = ⟨a1, a2, . . . , aℓ⟩
A = k[H] = k[ta1 , ta2 , . . . , taℓ] ⊆ S = k[t] = A

e = min(H \ {0})
A+ = tS ∩ A.

Then

A+ = (te) ∈ MaxΛ(A), and µA(A+) = 1 ⇐⇒ e = 1.

For ∀I ∈ MaxΛ(A), I = A+, or µA(I ) = 1.

Therefore, if A ̸= A, i.e., µA(A+) ≥ 2, then

A1 = AA+ = A

[
A+

te

]
= k[te , ta1−e , ta2−e , . . . , taℓ−e ].
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Example 3.4

Let ℓ ≥ 2, A = k[tℓ + tℓ+1] + tℓ+2S in S = k[t]. Then

(1) A is a weakly Arf ring.

(2) Let I = tℓ+2S . Then I ∈ MaxΛ(A), µA(I ) ≥ 2, and

A1 = AI = S .

(3) Let a = tℓ + tℓ+1 and I = (a). Then I ∈ MaxΛ(A), µA(I ) ≥ 2,
and

A1 = AI = k[t2, t3].
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4 Examples

Let k be a field and set A = k[[X ,Y ]]/(XY (X + Y )). Then

A is a CM local reduced ring with dimA = 1.

m does not have a principal reduction, if k = Z/(2).

Theorem 4.1

{integrally closed m-primary ideals} = {m} ∪ {stable ideals}

Recall Λ(A) =
{
(x)

∣∣∣ x ∈ W (A)
}
.

Hence, if k = Z/(2), then A is a weakly Arf ring, but not an Arf ring.
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Corollary 4.2

Suppose that k = Z/(2). Then
A⋉M, where M is a finitely generated A-module s.t. M is
torison-free as an A-module

A×A/m A×A/m · · · ×A/m A

are weakly Arf rings, but not Arf.
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In what follows, let k be a field and

A = k[[X ,Y ,Z ]]/I2( X Y Z
Y Z X ).

Then A is a CM local ring with dimA = 1.

Theorem 4.3

(1) If ch k = 3, then A is not an Arf ring.

(2) If ch k ̸= 3 and there is α ∈ k s.t. α ̸= 1, α3 = 1, then A is an
Arf ring.

Corollary 4.4

Suppose that k is an algebraically closed field. Then A is an Arf ring
if and only if ch k ̸= 3.
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Thank you for your attention.
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